New Direction for Rank-Based Cryptography

Hervé Talé Kalachi

LACGAA Seminar

Université Cheikh Anta Diop, Dakar

April 15, 2023

Outline

(1) Code-Based Cryptography
(2) Rank-Based Cryptography
(3) New Direction for Rank-Based Cryptography

Introduction

Linear code

(1) $\left(\mathbb{F}^{n},\|\cdot\|\right), \mathbb{F}$ a finite field and $\|\cdot\|$ a norm
(2) Linear code $\mathscr{C}=\mathrm{v} . \operatorname{ss}$ of $\left(\mathbb{F}^{n},\|\cdot\|\right)$
where \vec{v}_{i} are linearly independent.

Introduction

Linear code

© $\left(\mathbb{F}^{n},\|\cdot\|\right), \mathbb{F}$ a finite field and $\|\cdot\|$ a norm
(2) Linear code $\mathscr{C}=\mathrm{v} . \operatorname{ss}$ of $\left(\mathbb{F}^{n},\|\cdot\|\right)$

where \vec{v}_{i} are linearly independent.
(3) The matrix $G=$. is called a generator matrix of \mathscr{C}

Introduction

Linear code

(1) $\left(\mathbb{F}^{n},\|\cdot\|\right), \mathbb{F}$ a finite field and $\|\cdot\|$ a norm
(2) Linear code $\mathscr{C}=\mathrm{v} . \mathrm{ss}$ of $\left(\mathbb{F}^{n},\|\cdot\|\right)$

$$
\mathscr{C}=\bigoplus_{i=1}^{k} \mathbb{F} \vec{v}_{i}
$$

where \vec{v}_{i} are linearly independent.
() The matrix $\boldsymbol{G}=$
is called a generator matrix of \mathscr{C}
(9) Any $k \times n$ matrix whose rows form a basis of \mathscr{C} is also a generator matrix of \mathscr{C}

Introduction

Linear code

(1) $\left(\mathbb{F}^{n},\|\cdot\|\right), \mathbb{F}$ a finite field and $\|\cdot\|$ a norm
(2) Linear code $\mathscr{C}=\mathrm{v} . \mathrm{ss}$ of $\left(\mathbb{F}^{n},\|\cdot\|\right)$

$$
\mathscr{C}=\bigoplus_{i=1}^{k} \mathbb{F} \vec{v}_{i}
$$

where \vec{v}_{i} are linearly independent.
(3) The matrix $\boldsymbol{G}=\left(\begin{array}{c}\overrightarrow{v_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \overrightarrow{v_{k}}\end{array}\right)$ is called a generator matrix of \mathscr{C}
(Any $k \times n$ matrix whose rows form a basis of \mathscr{C} is also a generator matrix of \mathscr{C}

Introduction

Linear code

(1) $\left(\mathbb{F}^{n},\|\cdot\|\right), \mathbb{F}$ a finite field and $\|\cdot\|$ a norm
(2) Linear code $\mathscr{C}=\mathrm{v} . \mathrm{ss}$ of $\left(\mathbb{F}^{n},\|\cdot\|\right)$

$$
\mathscr{C}=\bigoplus_{i=1}^{k} \mathbb{F} \vec{v}_{i}
$$

where \vec{v}_{i} are linearly independent.
(3) The matrix $\boldsymbol{G}=\left(\begin{array}{c}\overrightarrow{v_{1}} \\ \cdot \\ \cdot \\ \overrightarrow{v_{k}}\end{array}\right)$ is called a generator matrix of \mathscr{C}
(1) Any $k \times n$ matrix whose rows form a basis of \mathscr{C} is also a generator matrix of \mathscr{C}

Introduction

Hamming metric
Let $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ and $\vec{x}=\left(x_{1} \cdots x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

$$
\|\vec{x}\|_{h}=\#\left\{i: x_{i} \neq 0\right\}
$$

Introduction

Hamming metric
Let $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ and $\vec{x}=\left(x_{1} \cdots x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

$$
\|\vec{x}\|_{h}=\#\left\{i: x_{i} \neq 0\right\}
$$

Example

- $\mathbb{F}=\mathbb{F}_{2^{5}}=\mathbb{F}_{2}<w>=<1, w, w^{2}, w^{3}, w^{4}>\mathbb{F}_{2}$
- $\vec{x}=(w, 0,0, w)$
-

$$
\|\vec{x}\|_{h}=2
$$

Introduction

Hamming metric

Let $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ and $\vec{x}=\left(x_{1} \cdots x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

$$
\|\vec{x}\|_{h}=\#\left\{i: x_{i} \neq 0\right\}
$$

Example

- $\mathbb{F}=\mathbb{F}_{2^{5}}=\mathbb{F}_{2}<w>=<1, w, w^{2}, w^{3}, w^{4}>_{\mathbb{F}_{2}}$
- $\vec{x}=(w, 0,0, w)$

$$
\|\vec{x}\|_{h}=2
$$

Introduction

Decoding $\vec{w} \in \mathbb{F}^{n}$ in $\mathscr{C}=$ Closest Vector Problem (CVP)

Introduction

Introduction - Decoding

Introduction - Decoding

Hardness of decoding

- Decoding is NP-Hard for a "random" linear code
- For Hamming metric: Berlekamp-McEliece-Van Tilborg '78

Solving the decoding problem

- Information set decoding
- Introduced by Prange '62
- Complexity: $2^{\text {at(}(1+o(1))}$

Introduction - Decoding

Hardness of decoding

- Decoding is NP-Hard for a "random" linear code
- For Hamming metric: Berlekamp-McEliece-Van Tilborg '78

Solving the decoding problem

- Information set decoding
- Introduced by Prange '62
- Complexity: $2^{\text {at(}(1+o(1))}$

$$
a=\operatorname{constante}\left(\frac{k}{n}, \frac{t}{n}\right)
$$

Some codes with efficient decoding algorithms

- GRS codes '60

One-variable polynomials

- Goppa codes '70

- Reed-Muller codes '54

Multivariate polynomials

Some codes with efficient decoding algorithms

- GRS codes '60

One-variable polynomials

- Goppa codes ' 70

Sub-field sub-codes of GRS codes

- Reed-Muller codes '54

Multivariate polynomials

Theory of error correcting codes

With the knowledge of a good basis

With the knowledge of a good basis

Without the knowledge of a good basis

Plan

(1) Code-Based Cryptography
(2) Rank-Based Cryptography
(3) New Direction for Rank-Based Cryptography

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key $=$ random basis
- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key $=$ random basis
- Private key $=$ decoding algorithm (good basis)
- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key = random basis
- Private key = decoding algorithm (good basis) - McEliece proposed binary Goppa codes
- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

(1) Based on linear codes equipped with an efficient decoding algorithm

- Public key $=$ random basis
- Private key $=$ decoding algorithm (good basis)
(2) McEliece proposed binary Goppa codes

Courtois-Finiasz-Sendrier '01

- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key $=$ random basis
- Private key $=$ decoding algorithm (good basis)
- McEliece proposed binary Goppa codes

Security assumptions

- Indistinguishability of Goppa codes Courtois-Finiasz-Sendrier '01
- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key $=$ random basis
- Private key $=$ decoding algorithm (good basis)
- McEliece proposed binary Goppa codes

Security assumptions

- Indistinguishability of Goppa codes Courtois-Finiasz-Sendrier '01
- Hardness of decoding a "random" linear code

McEliece Cryptosystem

McEliece Cryptosystem ('78)

- Based on linear codes equipped with an efficient decoding algorithm
- Public key $=$ random basis
- Private key = decoding algorithm (good basis)
- McEliece proposed binary Goppa codes

Security assumptions

- Indistinguishability of Goppa codes Courtois-Finiasz-Sendrier '01
- Hardness of decoding a "random" linear code

McEliece Cryptosystem ('78)

Advantages

- Encryption and decryption are very fast
- No efficient attack

McEliece Cryptosystem ('78)

Advantages

- Encryption and decryption are very fast
- No efficient attack
- Candidate for Post-Quantum Cryptography

McEliece Cryptosystem ('78)

Advantages

- Encryption and decryption are very fast
- No efficient attack

- Candidate for Post-Quantum Cryptography

McEliece Cryptosystem ('78)

Advantages

- Encryption and decryption are very fast
- No efficient attack
- Candidate for Post-Quantum Cryptography

McEliece Cryptosystem ('78)

COMPUTER SECURITY RESOURCE CENTER

Post-Quantum Cryptography PQC

f

Round 4 Submissions

Official comments on the Fourth Round Candidate Algorithms should be submitted using the "Submit Comment" link for the appropriate algorithm. Comments from the pqc-forum Google group subscribers will also be forwarded to the pqc-forum Google group list. We will periodically post and update the comments received to the appropriate algorithm.

All relevant comments will be posted in their entirety and should not include PII information in the body of the email message.

Please refrain from using OFFICIAL COMMENT to ask administrative questions, which should be sent to pqccomments@nist.gov

PROJECT LINKS

Overview

FAQs
News \& Updates
Events
Publications
Presentations
ADDITIONAL PAGES

McEliece Cryptosystem ('78)

Classic McEliece

(merger of Classic McEliece and NTS-KEM

GZ file (4MB)	Daniel J. Bernstein	Submit
KAT files (GZ format)	Tung Chou	Comment
(93MB)	Carlos Cid	View
Website	Jan Gilcher	Comments
	Tanja Lange	
	Varun Maram	
	Ingo von Maurich	
	Rafael Misoczki	
	Ruben Niederhagen	
	Edoardo Persichetti	
	Christiane Peters	
	Nicolas Sendrier	
	Jakub Szefer	
	Cen Jung Tjhai	
	Martin Tomlinson	
	Wen Wang	

McEliece Cryptosystem ('78)

Advantages

(1) Encryption and decryption are very fast
(2) No efficient attack
(3) Candidate for Post-Quantum Cryptography

Drawback

- Enormous size of the Public Key

McEliece Cryptosystem ('78)

Advantages

(1) Encryption and decryption are very fast
(2) No efficient attack
(3) Candidate for Post-Quantum Cryptography

Drawback

- Enormous size of the Public Key

McEliece Cryptosystem - Reduction of key size

Use another family of codes

- GRS codes by Niederreiter '86

- Reed-Muller codes by Sidelnikov '94
- Algebraic geometric codes by Janwa-Moreno '96
- LDPC codes by Monico-Rosenthal-Shokrollahi '00
- Wild Goppa (non-binary) by Bernstein-Lange-Peters '10

Polar codes by Shrestha-Kim '14

McEliece Cryptosystem - Reduction of key size

Use another family of codes
(1) GRS codes by Niederreiter '86
(3) Reed-Muller codes by Sidelnikov '94

McEliece Cryptosystem - Reduction of key size

Use another family of codes
© GRS codes by Niederreiter ' 86
(2) Reed-Muller codes by Sidelnikov '94

- Algebraic geometric codes by Janwa-Moreno '96
(1) LDPC codes by Monico-Rosenthal-Shokrollahi '00
(5) Wild Goppa (non-binary) by Bernstein-Lange-Peters '10
(6) Polar codes by Shrestha-Kim '14

McEliece Cryptosystem - Reduction of key size

Use another family of codes

(1) GRS codes by Niederreiter '86
(2) Reed-Muller codes by Sidelnikov '94
© Algebraic geometric codes by Janwa-Moreno '96

- LDPC codes by Monico-Rosenthal-Shokrollahi '00
(Wild Goppa (non-binary) by Bernstein-Lange-Peters '10
(6) Polar codes by Shrestha-Kim '14

McEliece Cryptosystem - Reduction of key size

Use another family of codes

(1) GRS codes by Niederreiter '86
(2) Reed-Muller codes by Sidelnikov '94
(3) Algebraic geometric codes by Janwa-Moreno '96
(1) LDPC codes by Monico-Rosenthal-Shokrollahi '00
(0) Wild Goppa (non-binary) by Bernstein-Lange-Peters '10
(c) Polar codes by Shrestha-Kim '14

McEliece Cryptosystem - Reduction of key size

Quasi-cyclique
Quasi-dyadique

McEliece Cryptosystem (Use more structured codes)

NGT		Search Cspe a \quad E Cssc Menu	
bIKE	Zip File (77MB)	Nicolas Aragon	Submit
	IP Statements	Paulo Barreto	Comment
	Website	Slim Bettaieb	View
	$\underline{\text { Website }}$	Loic Bidoux	Comments
		Olivier Blazy	
		Jean-Christophe	
		Deneuville	
		Phillipe Gaborit	
		Shay Gueron	
		Tim Guneysu	
		Carlos Aguilar Melchor	
		Rafael Misoczki	
		Edoardo Persichetti	
		Nicolas Sendrier	
		Jean-Pierre Tillich	-
		Gilles Zemor	
		Valentin Vasseur	

McEliece Cryptosystem (Use more structured codes)

DAGS	Zip File (1MB)	Gustavo Banegas	Submit Comment
	KAT Files (18MB)	Paolo S. L. M. Barreto	View Comments
	IP Statements	Brice Odilon Boidje	
		Pierre-Louis Cayrel	
	Website	Gilbert Ndollane Dione	
		Kris Gaj	
		Cheikh Thiecoumba Gueye	
		Richard Haeussler	
		Jean Belo Klamti	
		Ousmane N'diaye	
		Duc Tri Nguyen	
		Edoardo Persichetti	
		Jefferson E. Ricardini	

McEliece Cryptosystem - Reduction of key size

Several families do not behave like random codes
Example: GRS Codes - Distinguisher based on code product

- Schur / Star product of $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$

McEliece Cryptosystem - Reduction of key size

Several families do not behave like random codes

Example: GRS Codes - Distinguisher based on code product

- Schur / Star product of $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$

$$
\vec{a} \star \vec{b} \stackrel{\text { def }}{=}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

- \mathscr{A} and \mathscr{B} are two codes of length n.

McEliece Cryptosystem - Reduction of key size

Several families do not behave like random codes

Example: GRS Codes - Distinguisher based on code product

- Schur / Star product of $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$

$$
\vec{a} \star \vec{b} \stackrel{\text { def }}{=}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

- \mathscr{A} and \mathscr{B} are two codes of length n.
- $\mathscr{A} \star \mathscr{B} \stackrel{\text { def }}{=}\{\vec{a} \star \vec{b}: \vec{a} \in \mathscr{A}, \vec{b} \in \mathscr{B}\}$

McEliece Cryptosystem - Reduction of key size

Several families do not behave like random codes

Example: GRS Codes - Distinguisher based on code product

- Schur / Star product of $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$

$$
\vec{a} \star \vec{b} \stackrel{\text { def }}{=}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

- \mathscr{A} and \mathscr{B} are two codes of length n.
- $\mathscr{A} \star \mathscr{B} \stackrel{\text { def }}{=}\{\vec{a} \star \vec{b}: \vec{a} \in \mathscr{A}, \vec{b} \in \mathscr{B}\}$
- $\mathscr{B}=\mathscr{A} \rightarrow \mathscr{A}^{2}$
- "Random" code

McEliece Cryptosystem - Reduction of key size

Several families do not behave like random codes

Example: GRS Codes - Distinguisher based on code product

- Schur / Star product of $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$

$$
\vec{a} \star \vec{b} \stackrel{\text { def }}{=}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

- \mathscr{A} and \mathscr{B} are two codes of length n.
- $\mathscr{A} \star \mathscr{B} \stackrel{\text { def }}{=}\{\vec{a} \star \vec{b}: \vec{a} \in \mathscr{A}, \vec{b} \in \mathscr{B}\}$
- $\mathscr{B}=\mathscr{A} \rightarrow \mathscr{A}^{2}$
- "Random" code \mathscr{A}
- GRS code

$$
\operatorname{dim}\left(\mathscr{A}^{2}\right)=\binom{\operatorname{dim}(\mathscr{A})+1}{2}
$$

$$
\operatorname{dim}\left(G R S^{2}\right)=2 \operatorname{dim}(G R S)-1
$$

McEliece Cryptosystem - Reduction of key size

Date	Scheme	Attack	Complexity
$\mathbf{1 9 9 4}$	GRS	Sidelnikov-Shestakov	polynomial
2007	Reed-Muller	Minder-Shokrollahi	Sub-exponential
2013	GRS	Couvreur-Gaborit-Gauthier-Otmani-Tillich	polynomial
2010	quasi-cyclic alternants	Faugère-Otmani-Tillich	polynomial
2013	Reed-Muller	Chizhov-Borodin	polynomial
2014	Wild Goppa (non-binary) $m=2$	Couvreur-Otmani-Tillich	polynomial
2014	AG Codes	Couvreur-Màrquez Corbella-Pellikaan	polynomial
2014	quasi-dyadic Goppa	Faugère-Otmani-Perret-Portzamparc-Tillich	polynomial
2014	AG codes	Couvreur-Màrquez Corbella-Pellikaan	

Rank Metric Vs Hamming Metric

Example

- $\mathbb{F}=\mathbb{F}_{2^{5}}=\mathbb{F}_{2}<w>=<1, w, w^{2}, w^{3}, w^{4}>\mathbb{F}_{2}$
- $\vec{x}=(w, 0,0, w)$
- Hamming metric:
- Rank metric:

$$
\cdot\|\vec{x}\|_{h}=2 \quad \cdot\|\vec{x}\|_{2}=\operatorname{dim}\left(<w, w>_{F_{2}}\right)=1
$$

Rank Metric Vs Hamming Metric

Example

- $\mathbb{F}=\mathbb{F}_{2^{5}}=\mathbb{F}_{2}<w>=<1, w, w^{2}, w^{3}, w^{4}>_{\mathbb{F}_{2}}$
- $\vec{x}=(w, 0,0, w)$

- Hamming metric:

- $\|\vec{x}\|_{h}=2$
- Rank metric:
- $\|\vec{x}\|_{2}=\operatorname{dim}\left(<w, w>_{\mathbb{F}_{2}}\right)=1$

Rank Metric Vs Hamming Metric

Hardness of decoding

- Decoding is NP-Hard for a "random" linear code
* For Hamming metric: Berlekamp-McEliece-Van Tilborg '78

For Rank metric: Gaborit-Zémor '16

Solving the decoding problem

© Hamming metric

- Information set decoding
- Complexity: $2^{\text {at }(1+o(1))}$
$a=$ constante $\left(\frac{k}{n}, \frac{t}{n}\right)$

Rank Metric Vs Hamming Metric

Hardness of decoding

- Decoding is NP-Hard for a "random" linear code
* For Hamming metric: Berlekamp-McEliece-Van Tilborg '78
* For Rank metric: Gaborit-Zémor '16

Solving the decoding problem

(1) Hamming metric

- Information set decoding
- Complexity: $2^{a t(1+o(1))}$
- Aragon-Gaborit-Hautville-Tillich '18 $(n \geqslant m)$

$$
a=\operatorname{constante}\left(\frac{k}{n}, \frac{t}{n}\right)
$$

Rank Metric Vs Hamming Metric

Hardness of decoding

- Decoding is NP-Hard for a "random" linear code
* For Hamming metric: Berlekamp-McEliece-Van Tilborg '78
* For Rank metric: Gaborit-Zémor '16

Solving the decoding problem

(1) Hamming metric

- Information set decoding
- Complexity: $2^{a t(1+o(1))}$

$$
a=\operatorname{constante}\left(\frac{k}{n}, \frac{t}{n}\right)
$$

(2) Rank metric:

- Ourivski-Johannsson '02

$$
(t m)^{3} 2^{k t+f(k, t)}
$$

- Aragon-Gaborit-Hautville-Tillich '18 $(n \geqslant m)$

$$
(n-k)^{3} m^{3} 2^{w\left\lceil\frac{(k+1) m}{n}\right\rceil-m}
$$

Plan

(1) Code-Based Cryptography

(2) Rank-Based Cryptography
(3) New Direction for Rank-Based Cryptography

Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem '91

- Rank metric with Gabidulin codes
- But many attacks

```
- Gibson's attacks '95, '96
```


Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem '91

- Rank metric with Gabidulin codes - But many attacks

Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem ' 91

- Rank metric with Gabidulin codes
- But many attacks
- Gibson's attacks '95, '96
- Overbeck's attack 'or

Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem '91

© Rank metric with Gabidulin codes

- But many attacks
- Gibson's attacks '95, '96
- Overbeck's attack '05

- Gabidulin '08

- Rashwan-Gabidulin-Honary '10

Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem '91

- Rank metric with Gabidulin codes
- But many attacks
- Gibson's attacks '95, '96
- Overbeck's attack '05

Some GPT Variants

- Gabidulin '00
- Rashwan-Gabidulin-Honary '10

Rank metric cryptography

Gabidulin-Paramonov-Tretjakov cryptosystem '91

© Rank metric with Gabidulin codes

- But many attacks
- Gibson's attacks '95, '96
- Overbeck's attack '05

Some GPT Variants

- Gabidulin '08
- Rashwan-Gabidulin-Honary '10

Gabidulin-Based Cryptosystem

Gabidulin's codes do not behave like random codes

- Overbeck's distinguisher

Gabidulin-Based Cryptosystem

Gabidulin's codes do not behave like random codes

- Overbeck's distinguisher :
$\Lambda_{f}: \mathbb{F}_{q^{m}}^{n} \longrightarrow \mathbb{F}_{q^{m}}^{n}$
$\mathscr{U} \longmapsto \Lambda_{f}(\mathscr{U}) \stackrel{\text { def }}{=} \mathscr{U}+\mathscr{U}^{q}+\cdots+\mathscr{U}^{q^{f}}$
"Random" code \mathscr{A} •Gabidulin code
$\operatorname{dim}\left(\Lambda_{f}(\mathscr{A})\right)=\min \{n, k(f+1)\}, \operatorname{dim}\left(\Lambda_{f}(\operatorname{Gab})\right)=\operatorname{dim}(\operatorname{Gab})+f$

Gabidulin-Based Cryptosystem

Gabidulin's codes do not behave like random codes

- Overbeck's distinguisher :

$$
\begin{aligned}
\Lambda_{f}: \mathbb{F}_{q^{m}}^{n} & \longrightarrow \mathbb{F}_{q^{m}}^{n} \\
\mathscr{U} & \longmapsto \Lambda_{f}(\mathscr{U}) \stackrel{\text { def }}{=} \mathscr{U}+\mathscr{U}^{q}+\cdots+\mathscr{U}^{q^{f}}
\end{aligned}
$$

- "Random" code \mathscr{A}
- Gabidulin code $\operatorname{dim}\left(\Lambda_{f}(\mathscr{A})\right)=\min \{n, k(f+1)\}, \operatorname{dim}\left(\Lambda_{f}(\operatorname{Gab})\right)=\operatorname{dim}(G a b)+f$

New and interesting progress in rank metric

LRPC Codes with application to cryptography ${ }^{1}$

- $\mathscr{V}=<\vec{v}_{1}, \cdots, \vec{v}_{d}>_{\mathbb{F}_{q}} \subset \mathbb{F}_{q^{m}}$
- $\boldsymbol{H} \in \mathcal{M}_{n-k \times n}(\mathscr{V}), \operatorname{Rank}(\boldsymbol{H})=n-k$
- $\boldsymbol{G}_{p u b} \in \mathcal{M}_{k \times n}\left(\mathbb{F}_{q^{m}}\right)$ such that $\boldsymbol{H} \boldsymbol{G}_{p u b}^{t}=\mathbf{0}$
- The public key is

$$
\left(\boldsymbol{G}_{\text {pub }}, t\right) \text { with } t \leqslant \frac{n-k}{d}
$$

[^0]
A Basic LRPC Cryptosystem

Encryption with LRPC Codes

- $\vec{m} \in \mathbb{F}_{q^{m}}^{k}$ a message to encrypt
- $\mathscr{E}=<\vec{b}_{1}, \cdots, \vec{b}_{t}>_{\mathbb{F}_{q}} \subset \mathbb{F}_{q^{m}}$
- $\vec{e}{ }^{\$} \mathscr{E}^{n}$
- The ciphertext is

$$
\vec{y}=\vec{m} \boldsymbol{G}_{p u b}+\vec{e}
$$

A Basic LRPC Cryptosystem

Decryption

- Compute the syndrome

$$
\vec{s}=\boldsymbol{H} \vec{y}^{T}=\boldsymbol{H} \boldsymbol{G}_{\text {pub }}^{T} \vec{m}^{T}+\boldsymbol{H} \vec{e}^{T}=\boldsymbol{H} \vec{e}^{T}
$$

- Remember that

A Basic LRPC Cryptosystem

Decryption

- Compute the syndrome

$$
\vec{s}=\boldsymbol{H} \vec{y}^{T}=\boldsymbol{H} \boldsymbol{G}_{\text {pub }}^{T} \vec{m}^{T}+\boldsymbol{H} \vec{e}^{T}=\boldsymbol{H} \vec{e}^{T}
$$

- Remember that

$$
\boldsymbol{H}=\left(h_{i j}\right)_{i, j}=\left(\sum_{\ell=1}^{d} h_{i j \ell} \vec{v}_{\ell}\right)_{i, j}, \quad h_{i j \ell} \in \mathbb{F}_{q}
$$

- And

$$
\vec{e}=\left(e_{1}, \cdots, e_{n}\right)=\left(\sum_{r=1}^{t} e_{1 r} \vec{b}_{r}, \cdots, \sum_{r=1}^{t} e_{n r} \vec{b}_{r}\right)=\left(\sum_{r=1}^{t} e_{\eta r} \vec{b}_{r}\right)_{\eta}, \quad e_{\eta r} \in \mathbb{F}_{q}
$$

A Basic LRPC Cryptosystem

Decryption

- Compute the syndrome

$$
\vec{s}=\boldsymbol{H} \vec{y}^{T}=\boldsymbol{H} \boldsymbol{G}_{\text {pub }}^{T} \vec{m}^{T}+\boldsymbol{H} \vec{e}^{T}=\boldsymbol{H} \vec{e}^{T}
$$

- Remember that

$$
\boldsymbol{H}=\left(h_{i j}\right)_{i, j}=\left(\sum_{\ell=1}^{d} h_{i j \ell} \vec{v}_{\ell}\right)_{i, j}, \quad h_{i j \ell} \in \mathbb{F}_{q}
$$

- And

$$
\vec{e}=\left(e_{1}, \cdots, e_{n}\right)=\left(\sum_{r=1}^{t} e_{1 r} \vec{b}_{r}, \cdots, \sum_{r=1}^{t} e_{n r} \vec{b}_{r}\right)=\left(\sum_{r=1}^{t} e_{\eta r} \vec{b}_{r}\right)_{\eta}, \quad e_{\eta r} \in \mathbb{F}_{q}
$$

- Thus,

$$
s_{i} \in \quad<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

A Basic LRPC Cryptosystem

Decryption

- We have $s_{i} \in<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}$
- That is to say

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}} \subseteq \quad<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

A Basic LRPC Cryptosystem

Decryption

- We have $s_{i} \in<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}$
- That is to say

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}} \subseteq<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

- For $d, t, d t \lll n-k$, w.h.p we have $\operatorname{dim} S=d t$

A Basic LRPC Cryptosystem

Decryption

- We have $s_{i} \in<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}$
- That is to say

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}} \subseteq<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

- For $d, t, d t \lll n-k$, w.h.p we have $\operatorname{dim} S=d t$
- i.e,

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}}=<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

- For $\ell=1, \cdots, d$ compute $S_{\ell}=\vec{v}_{\ell}^{-1} S$ and

A Basic LRPC Cryptosystem

Decryption

- We have $s_{i} \in<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}$
- That is to say

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}} \subseteq<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

- For $d, t, d t \lll n-k$, w.h.p we have $\operatorname{dim} S=d t$
- i.e,

$$
S=<s_{1}, \cdots s_{n-k}>_{\mathbb{F}_{q}}=<\vec{v}_{1} \vec{b}_{1}, \vec{v}_{1} \vec{b}_{2}, \cdots, \vec{v}_{d} \vec{b}_{t}>_{\mathbb{F}_{q}}
$$

- For $\ell=1, \cdots, d$ compute $S_{\ell}=\vec{v}_{\ell}^{-1} S$ and

$$
\bigcap_{\ell=1}^{d} S_{\ell} \stackrel{\text { w.h.p }}{=}<\vec{b}_{1}, \cdots, \vec{b}_{t}>_{\mathbb{F}_{q}}=\mathscr{E}
$$

LRPC Code-Based Cryptosystem

Security assumptions

- Indistinguishability of LRPC codes: Gaborit-Murat-Ruatta-Zémor '13
- Hardness of decoding a "random" rank-metric code

Rank-Based Cryptography in the NIST competition

NGT Information Technology Laboratory COMPUTER SECURITY RESOURCE CENTER		Search CSRC ${ }^{\text {Q }}$ -
		c-nc
ROLLO (merger of LAKE, LOCKER and Ouroboros-R)	Zip File (8MB) IP Statements Website	Nicolas Aragon Submit Olivier Blazy Comment Jean-Christophe View Deneuville Comments Philippe Gaborit Adrien Hauteville Olivier Ruatta Jean-Pierre Tillich Gilles Zemor Carlos Aguilar Melchor Slim Bettaieb Loic Bidoux Magali Bardet Ayoub Otmani

Rank-Based Cryptography in the NIST competition

Website

Rank-Based Cryptography in the NIST competition

Annual International Conference on the Theory and Applications of Cryptographic Techniques
\rightarrow EUROCRYPT 2020: Advances in Cryptology - EUROCRYPT 2020 pp 64-93 | Cite as

Home > Advances in Cryptology - EUROCRYPT 2020 > Conference paper
An Algebraic Attack on Rank Metric Code-Based Cryptosystems
 Jean-Pierre Tillich \square

Conference paper | First Online: 01 May 2020
1499 Accesses $\mid 21$ Citations

Rank-Based Cryptography in the NIST competition

International Conference on the Theory and Application of Cryptology and Information Security
\rightarrow ASIACRYPT 2020: Advances in Cryptology - ASIACRYPT 2020 pp 507-536 | Cite as

Home > Advances in Cryptology - ASIACRYPT 2020 > Conference paper

Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems

Magali Bardet, Maxime Bros \because, Daniel Cabarcas, Philippe Gaborit, Ray PerIner, Daniel Smith-Tone, Jean-Pierre Tillich \& Javier Verbel

Conference paper | First Online: 06 December 2020
1408 Accesses $\mid 35$ Citations $\mid 1$ Altmetric

Excerpt from the NIST Report on the Second Round of the PQCS

"... Despite the development of algebraic attacks, NIST believes rank-based cryptography should continue to be researched. The rank metric cryptosystems offer a nice alternative to traditional hamming metric codes with comparable bandwidth... " 2

[^1] 2020

Plan

(1) Code-Based Cryptography

(2) Rank-Based Cryptography
(3) New Direction for Rank-Based Cryptography

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}=\vec{m} \boldsymbol{G}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson's Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}=\vec{m} \boldsymbol{G}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson's Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\mathscr{C}_{e x t}=<\binom{\boldsymbol{G}}{\vec{y}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{e}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{m} \boldsymbol{G}+\vec{e}}>_{\mathbb{F}_{q^{m}}}
$$

$$
\Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
$$

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}=\vec{m} \boldsymbol{G}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson's Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\begin{gathered}
\mathscr{C}_{e x t}=<\binom{\boldsymbol{G}}{\vec{y}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{e}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{m} \boldsymbol{G}+\vec{e}}>_{\mathbb{F}_{q^{m}}} \\
\Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
\end{gathered}
$$

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}=\vec{m} \boldsymbol{G}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson's Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\begin{gathered}
\mathscr{C}_{\text {ext }}=<\binom{\boldsymbol{G}}{\vec{y}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{e}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{m} \boldsymbol{G}+\vec{e}}>_{\mathbb{F}_{q^{m}}} \\
\Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
\end{gathered}
$$

- Each solution is of the form $\vec{c}^{\prime}=\lambda \vec{e}, \lambda \in \mathbb{F}_{q^{m}}^{*}$
- There is exactly one solution of the form

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}=\vec{m} \boldsymbol{G}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson’s Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\begin{gathered}
\mathscr{C}_{\text {ext }}=<\binom{\boldsymbol{G}}{\vec{y}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{e}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{m} \boldsymbol{G}+\vec{e}}>_{\mathbb{F}_{q^{m}}} \\
\Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
\end{gathered}
$$

- Each solution is of the form $\vec{c}^{\prime}=\lambda \vec{e}, \lambda \in \mathbb{F}_{q^{m}}^{*}$
- There is exactly one solution of the form $\vec{c}^{\prime}=\left(1, c_{2}^{\prime}, \cdots, c_{n}^{\prime}\right)$

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{\mathbb{F}_{q^{m}}}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}$ is the received word with $\operatorname{Rank}_{\mathbb{F}_{q}}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson’s Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\begin{gathered}
\mathscr{C}_{\text {ext }}=<\binom{\boldsymbol{G}}{\vec{y}}>_{\mathbb{F}_{q^{m}}}=<\binom{\boldsymbol{G}}{\vec{e}}>_{\mathbb{F}_{q^{m}}}=<\left(\boldsymbol{I}_{k+1} \mid \boldsymbol{R}\right)>_{\mathbb{F}_{q^{m}}} \\
\Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
\end{gathered}
$$

- Each solution is of the form $\vec{c}^{\prime}=\lambda \vec{e}, \lambda \in \mathbb{F}_{q^{m}}^{*}$
- There is exactly one solution of the form $\vec{c}^{\prime}=\left(1, c_{2}^{\prime}, \cdots, c_{n}^{\prime}\right)$

Starting Point of Recent Algebraic Attacks

- \mathscr{C} is a $(n, k)_{s}$-code generated by \boldsymbol{G}
- $\vec{y}=\vec{c}+\vec{e}$ is the received word with $\operatorname{Rank}_{R}(\vec{e})=r$
- The problem is to find \vec{e}

Ourivski-Johansson's Modelling

- $\mathscr{C}_{\text {ext }}$ the $(n, k+1)$-code generated by

$$
\begin{aligned}
\mathscr{C}_{\text {ext }}= & <\binom{\boldsymbol{G}}{\vec{y}}>_{s}=<\binom{\boldsymbol{G}}{\vec{e}}>_{s}=<\left(\boldsymbol{I}_{k+1} \mid \boldsymbol{R}\right)>_{s} \\
& \Longrightarrow \exists \vec{c}^{\prime} \in \mathscr{C}_{\text {ext }} \text { s.t } \operatorname{Rank}_{\mathbb{F}_{q}}\left(\vec{c}^{\prime}\right)=r
\end{aligned}
$$

- Each solution is of the form $\vec{c}^{\prime}=\lambda \vec{e}, \lambda \in S^{*}$
- There is exactly one solution of the form $\vec{c}^{\prime}=\left(1, c_{2}^{\prime}, \cdots, c_{n}^{\prime}\right)$??

Rank Metric Codes-Based Cryptography over Finite Rings

Another Fact : zero divisors

- Let $R=\mathbb{Z}_{6}$ and $\boldsymbol{A}=\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right) .2 \boldsymbol{A}=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$.
- We have
$\operatorname{Rank}_{R}(\boldsymbol{A})=2$, while $\operatorname{Rank}_{R}(2 \boldsymbol{A})=1$
Rank Decoding Problem over Finite Rings
- Hardness
- Combinatorial algorithms?
- Algebraic Algorithms ?
${ }^{a}$ Hervé Talé Kalachi, Hermann Tchatchiem Kamche. On the rank decoding problem over finite principal ideal

Rank Metric Codes-Based Cryptography over Finite Rings

Another Fact : zero divisors

- Let $R=\mathbb{Z}_{6}$ and $\boldsymbol{A}=\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right) .2 \boldsymbol{A}=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$.
- We have

$$
\operatorname{Rank}_{R}(\boldsymbol{A})=2, \text { while } \operatorname{Rank}_{R}(2 \boldsymbol{A})=1
$$

Rank Decoding Problem over Finite Rings

- Hardness ? ${ }^{a}$
- Combinatorial algorithms ?
- Algebraic Algorithms ?

[^2]- Existence of structured rank metric codes over finite rings?

Rank Metric Codes-Based Cryptography over Finite Rings

Another Fact : zero divisors

- Let $R=\mathbb{Z}_{6}$ and $\boldsymbol{A}=\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right) .2 \boldsymbol{A}=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$.
- We have

$$
\operatorname{Rank}_{R}(\boldsymbol{A})=2, \text { while } \operatorname{Rank}_{R}(2 \boldsymbol{A})=1
$$

Rank Decoding Problem over Finite Rings

- Hardness ? ${ }^{a}$
- Combinatorial algorithms ?
- Algebraic Algorithms ?

[^3]- Existence of structured rank metric codes over finite rings ?

Some Progress for Rank Based Crypto over FR

Gabidulin codes over FPIR

Tchatchiem \& Mouaha '19

Some Progress for Rank Based Crypto over FR

LRPC codes over \mathbb{Z}_{p}

Renner, Puchinger, Wachter-Zeh, Hollanti, Freij-Hollanti '20

Gabidulin codes over FPIR

Tchatchiem \& Mouaha '19

Some Progress for Rank Based Crypto over FR

LRPC codes over $\mathbb{Z}_{p^{\prime}}$

Renner, Puchinger, Wachter-Zeh, Hollanti, Freij-Hollanti '20

LRPC codes over \mathbb{Z}_{n}

Kamwa, Talé, Fouotsa '21

LRPC codes over Galois Rings

Julian Renner, Alessandro Neri \& Sven Puchinger '21

Some Progress for Rank Based Crypto over FR

LRPC codes over $\mathbb{Z}_{p^{\prime}}$

Renner, Puchinger, Wachter-Zeh, Hollanti, Freij-Hollanti '20

LRPC codes over \mathbb{Z}_{n}

Kamwa, Talé, Fouotsa '21

Gabidulin codes over FPIR

Tchatchiem \& Mouaha '19

LRPC codes over Galois Rings

Julian Renner, Alessandro Neri \& Sven Puchinger '21Sven Puchinger 21

Rings

Tchatchiem, Talé, Kamwa, Fouotsa '21

Some Progress for Rank Based Crypto over FR

LRPC codes over $\mathbb{Z}_{p^{\prime}}$

Renner, Puchinger, Wachter-Zeh, Hollanti, Freij-Hollanti '20

LRPC codes over \mathbb{Z}_{n}

Kamwa, Talé, Fouotsa '21

LRPC codes over Galois Rings

Julian Renner, Alessandro Neri \& Sven Puchinger '21

Gabidulin codes over FPIR

Tchatchiem \& Mouaha '19

LRPC codes over Finite Rings

Tchatchiem, Talé, Kamwa, Fouotsa '21

Security and Parameters

Algebraic Attacks ?

Combinatorial Attacks over Finite Rings

Talé \& Tchatchiem '23

[^0]: ${ }^{1}$ Gaborit-Murat-Ruatta-Zémor '13

[^1]: ${ }^{2}$ Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process, July

[^2]: ${ }^{a}$ Hervé Talé Kalachi, Hermann Tchatchiem Kamche. On the rank decoding problem over finite principal ideal rings. Advances in Mathematics of Communications

[^3]: ${ }^{a}$ Hervé Talé Kalachi, Hermann Tchatchiem Kamche. On the rank decoding problem over finite principal ideal rings. Advances in Mathematics of Communications

