SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Square Code Attack on a Modified Sidelnikov Cryptosystem

Ayoub Otmani¹ Hervé Talé Kalachi^{1,2}

¹LITIS University of Rouen (France)

²ERAL University of Yaounde I (Cameroon)

May 23, 2015

Э.

・ロト ・回ト ・ヨト

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Linear code

Introduction

Linear code = vector space over a finite field

$$\mathscr{C} = \bigoplus_{i=1}^k \mathbb{F}_q \ \vec{v}_i$$

where \vec{v}_i are linearly independent.

2 Any $k \times n$ matrix **G** whose rows form a basis of \mathscr{C} is a generator matrix of \mathscr{C} .

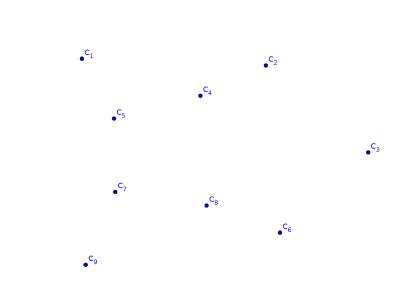
③ Decoding a word $\vec{w} \in \mathbb{F}_q^n = \text{Closest Vector Problem (CVP) for the Hamming metric$

A. Otmani and H. Kalachi (LITIS UR and ERAL UY1)

э

• • • • • • • • • • • •

Introduction


SC Attack on a Modified Sidelnikov Cryptosystem

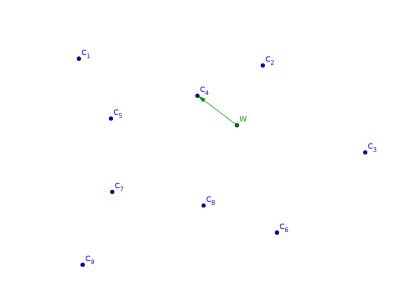
A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Introduction


SC Attack on a Modified Sidelnikov Cryptosystem

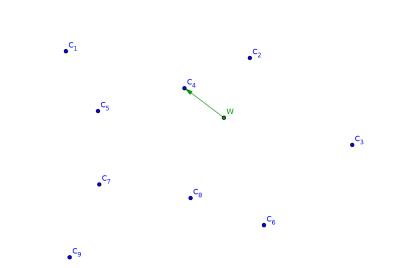
A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Introduction


SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

• Decoding is NP-Hard for a random linear code (Berlekamp-McEliece-Van Tilborg '78)

A. Otmani and H. Kalachi (LITIS UR and ERAL UY1)

< E ト E ク へ (* May 23, 2015 5 / 24

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

McEliece Public-Key Encryption Scheme ('78)

- **③** Based on linear codes equipped with an efficient decoding algorithm
 - Public key = random basis
 - Private key = decoding algorithm
- McEliece proposed binary Goppa codes

McEliece Variants

Introduction

- GRS codes by Niederreiter '86
- Binary Reed-Muller codes by Sidelnikov '94

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Designing hiding methods

Introduction

- Several families do not behave like random codes. eg.
 - $\,\bullet\,$ GRS codes $\rightarrow\,$ Sidelnikov-Shestakov's attack '94
 - Reed-Muller code \rightarrow Minder-Shokrollahi's attack '07
- Adding some randomness
 - Berger-Loidreau '05 ightarrow Random subcode
 - $\bullet\,$ Wieschebrink '06 \rightarrow Random columns with GRS
 - $\bullet~$ Gueye-Mboup '13 \rightarrow Random columns with Reed-Muller codes

Our contribution

Cryptanalysis of Gueye-Mboup's proposal

< 口 > < 同

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink's Hiding Method

2 Cryptanalysis of Gueye-Mboup's Proposal

3 Conclusion

Outline

Plan

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink's Hiding Method

2 Cryptanalysis of Gueye-Mboup's Proposal

3 Conclusion

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

McEliece Encryption Scheme

Parameters setup

- Let $\mathcal{G}_{n,k,t}$ be a collection of codes of length n and dimension k that can decode t errors
- Choose *n*, *k* and *t* according to a security parameter

Key generation

- Randomly pick $\mathscr{C} \in \mathscr{G}_{n,k,t}$
- Choose a generator matrix ${\pmb G}$ of ${\mathscr C}$ and let $f_{\pmb G}$ be a decoding algorithm associated to ${\pmb G}$
- Randomly pick $n \times n$ permutation matrix **P** and $k \times k$ invertible matrix **S**
- Private key = ($\boldsymbol{S}, \boldsymbol{G}, \boldsymbol{P}$) and public key = (\boldsymbol{G}_{pub}, t) with

$$G_{pub} = SGP$$

A. Otmani and H. Kalachi (LITIS UR and ERAL UY1)

McEliece Encryption Scheme

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Encryption

For $\vec{m} \in \mathbb{F}_q^k$,

- **9** Generate randomly $\vec{e} \in \mathbb{F}_q^n$ of Hamming weight t
- **2** Cipher text $\vec{c} = \vec{m} \boldsymbol{G}_{pub} + \vec{e}$

Decryption

• Compute $\vec{z} = \vec{c} \boldsymbol{P}^{-1}$	$ec{z}=ec{m}oldsymbol{S}oldsymbol{G}+ec{e}oldsymbol{P}^{-1}$
2 Compute $\vec{y} = f_{\boldsymbol{G}}(\vec{z})$	$ec{y}=ec{m}oldsymbol{\mathcal{S}}$
• Return $\vec{m}' = \vec{y} \boldsymbol{S}^{-1}$	$ec{m}'=ec{m}$

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink's Variant

Key generation

- Pick at random $k \times n$ generator matrix **G**
- **2** Pick at random $k \times \ell$ matrix **R**
- Pick at random k × k invertible matrix S and a (n + l) × (n + l) permutation matrix P
- Public generator matrix is $\boldsymbol{G}_{pub} = \boldsymbol{S}(\boldsymbol{G} \mid \boldsymbol{R})\boldsymbol{P}$

Decryption

Eliminate the ℓ random components of the cipher text

Security

Number of errors t has to be increased \rightsquigarrow decryption failure

Different Proposals

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink ('06) based on GRS codes

 \rightarrow cryptanalysed using component-wise product of codes by Couvreur-Gaborit-Gautier-Otmani-Tillich ('13)

Oueye and Mboup ('13) based on Reed-Muller codes

Different Proposals

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueve-Mboup's Proposal

Conclusion

Wieschebrink ('06) based on GRS codes

 \rightarrow cryptanalysed using component-wise product of codes by Couvreur-Gaborit-Gautier-Otmani-Tillich ('13)

Q Gueye and Mboup ('13) based on Reed-Muller codes

< 3

・ロト ・回ト ・ヨト

Plan

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink's Hiding Method

2 Cryptanalysis of Gueye-Mboup's Proposal

3 Conclusion

・ロト ・ 日 ト ・ 日 ト ・ 日

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Componentwise products based attacks

Definition 1 (Componentwise products)

Let
$$\vec{a} = (a_1, ..., a_n)$$
 and $\vec{b} = (b_1, ..., b_n)$ in \mathbb{F}_q^n

$$\vec{a} \star \vec{b} \stackrel{def}{=} (a_1 b_1, ..., a_n b_n)$$

Definition 2 (Star product code)

$$\bullet \ \mathscr{A}$$
 and \mathscr{B} are two codes of length n

•
$$\mathscr{A} \star \mathscr{B} \stackrel{\mathsf{def}}{=} \left\{ \vec{a} \star \vec{b} : \vec{a} \in \mathscr{A}, \vec{b} \in \mathscr{B} \right\}$$

•
$$\mathscr{B} = \mathscr{A} \to \mathscr{A}^2$$

Remark 1

The star product of codes was first used by Wieschebrink '11 to attack the Berger-Loidreau Scheme.

Recent attacks using the star product

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Gueye-Mboup's Proposal

Conclusion

Date	Scheme	Attack	Complexity
2013	Homomorphic RS	Couvreur-Gaborit-Gauthier-Otmani-Tillich	polynomial
2013	GRS	Couvreur-Gaborit-Gauthier-Otmani-Tillich	polynomial
2013	GRS with ${m P}+{m R}$	Couvreur-Gaborit-Gauthier-Otmani-Tillich	polynomial
2013	$GRS+random\;col$	Couvreur-Gaborit-Gauthier-Otmani-Tillich	polynomial
2013	$\mathcal{RM}(r,m)$	Chizhov-Borodin	polynomial
2014	wild McEliece $m = 2$	Couvreur-Otmani-Tillich	polynomial
2014	AG	Couvreur-Màrquez Corbella-Pellikaan	polynomial
_			

3

Behavior of the Star Product

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Proposition 1

1

2

 \mathscr{A} and \mathscr{B} are two linear codes of length n.

$$\mathsf{dim}(\mathscr{A}\star\mathscr{B})\leqslant\mathsf{dim}(\mathscr{A})\mathsf{dim}(\mathscr{B})$$

$$\dim(\mathscr{A}^2) \leqslant \begin{pmatrix} \dim(\mathscr{A}) + 1 \\ 2 \end{pmatrix}$$

• Random code \mathscr{A}

$$dim(\mathscr{A}^2) = \begin{pmatrix} dim(\mathscr{A}) + 1 \\ 2 \end{pmatrix}$$
 with high probability

• GRS code \mathscr{A}

$$dim(\mathscr{A}^2) = \frac{2dim(\mathscr{A}) - 1}{2}$$

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Reed-Muller Code

Definition 3

- Let r, m and n such that $0 \leq r \leq m$ and $n = 2^m$
- $\mathcal{BP}(r, m)$ the set of boolean polynomials of m variables with degree $\leqslant r$

•
$$\mathbb{F}_2^m = \{a_1, ..., a_n\}$$

 $\mathcal{RM}(r, m) \stackrel{\text{def}}{=} \left\{ (f(a_1), ..., f(a_n)) / f \in \mathcal{BP}(r, m) \right\}$

Proposition 2

$$\mathcal{RM}(r,m)^2 = \mathcal{RM}(2r,m)$$

A. Otmani and H. Kalachi (LITIS UR and ERAL UY1)

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Description of our Attack – Preliminaries

Assumptions

• Let $\mathcal{RM}(r, m)$ be a Reed-Muller code such that

 $\dim(\mathcal{RM}(2r,m)) + \ell \leqslant n$

- $\boldsymbol{G}_{pub} =$ public generator matrix of the Gueye-Mboup scheme
- $\bullet \ {\mathscr C}_{{\it pub}}$ the code generated by ${\pmb G}_{{\it pub}}$

Proposition 3

 $dim(\mathscr{C}^2_{pub}) = dim(\mathcal{RM}(2r,m)) + \ell$ with a high probability

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Description of our Attack

Definition 4 (Punctured code)

The punctured code of ${\mathscr C}$ at position i consists in removing the i^{th} coordinate of each element of ${\mathscr C}$

First step – Detection of random part

Let \mathcal{D}_i be the punctured code of \mathcal{C}_{pub} at i:

• *i* is a random position

$$\dim(\mathscr{D}_i^2) = \ell - 1 + \dim(\mathcal{RM}(extsf{2r}, m))$$

• *i* is not a random position

$$dim(\mathscr{D}_i^2) = \ell + \dim(\mathcal{RM}(2r, m))$$

Last step

Use the attack of [Minder, L. and Shokrollahi, M.A.] or the attack of [Chizhov, I.V., Borodin, M.A]

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Complexity

Our Attack

- We use at most $O(k^2n^2)$ operations for each computation of $dim(\mathcal{D}_i^2)$ and this at most n times
- So the overall complexity for guessing the random columns is $O(n^5)$

Time	(m, r, ℓ)
32 minutes	(9, 3, 10)
3 Hours 13 minutes	(10, 3, 10)
23 Hours 36 minutes	(11, 3, 10)

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Complexity

Our Attack

- We use at most $O(k^2n^2)$ operations for each computation of $dim(\mathscr{D}_i^2)$ and this at most *n* times
- So the overall complexity for guessing the random columns is $O(n^5)$

・ロト ・日下・ ・ ヨト

Plan

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Wieschebrink's Hiding Method

2 Cryptanalysis of Gueye-Mboup's Proposal

3 Conclusion

・ロト ・四ト ・日ト ・日

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

- Sidelnikov '94, Modified McEliece Cryptosystem based on Reed-Muller codes
- Minder-Shokrollahi '07, sub-exponential attack on the Sidelnikov cryptosystem
- Gueye-Mboup '13, Modified Sidelnikov cryptosystem with Random columns for more security

Our attack

Conclusion

This work shows that the random columns in the Sidelnikov scheme does not bring any security improvement

→ ∃ →

SC Attack on a Modified Sidelnikov Cryptosystem

A. Otmani and H. Kalachi

Wieschebrink's Hiding Method

Cryptanalysis of Gueye-Mboup's Proposal

Conclusion

Conclusion

Chizhov-Borodin '13

- Attack on Sidelnikov cryptosystem,
- The attack is based on star product
- Polynomial, but only for some kind of parameters

 $\mathcal{RM}(r,m)$: gcd(r,m) = 1

A new challenge

Propose a polynomial time attack (using star product) on the Sidelnikov cryptosystem, without restriction on r and m